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Abstract. We reexamine the variation of the Slater-Koster tight-binding (SKTB) parameters 
with the interatomic distance and the lattice structure. It is shown that when volume effects are 
separated from lattice (field) effects, the scaling with the volume can be described in terms of 
the electron density (or equivalently the parameter r s )  while the scaling with the lattice Structure 
can be described in terms of the number of nearest neighbours. The proposed scaling form 
appears to fit very accurately the SKTB parameters of Si obtained by the m-wm method. 

The tight-binding (TB) method as proposed by Slater and Koster [I] (SK) has been 
implemented as a key approach in the solution of many problems of condensed matter 
physics due mainly to its simplicity and its low demands in computer usage. The method 
requires the knowledge of the appropriate parameters, known as the SK parameters, which 
are usually determined by fitting to ab initio calculated band structures. In such applications 
the SKTB method takes firm ab initio character. On the other hand, in other applications of 
the method, such as in those that investigate the pressure dependence of various electronic 
properties [2,3], phase hansformations and more recently in problems that utilize the SKTB 
method in molecular dynamics simulations [4], the ab initio character of the TB molecular 
dynamics method is suppressed because necessarily simple semiempirical scaling schemes 
are introduced in order to describe the variation of the SKTB parameters with the interatomic 
distance. In the latter cases however one can retain both tlie simplicity of the scaling scheme 
(so as to be applicable with computer time demanding simulations), and much of the ab initio 
character of the method if suitably chosen scaling schemes are used, which are determined 
by ab initio methods. It is the purpose of the present work to propose such a simple scaling 
scheme that retains its ab initio character. 

The most commonly used scaling scheme has the form 

Vi,&) = vc~2(do/d)"  (1) 

where V$,, i ,  j = s, p. d, . . . and m = m ,  n, 6,  . . . are the SKTB parameters calculated 
at the equilibrium interatomic distance do and Vijm(d) their corresponding values at -the 
interatomic distance d. For U = 2, (1) represents the scaling scheme of Harrison 161, which, 
although appropriate over a small range around the equilibrium distance &. is often used 
for even larger ranges of interatomic distances. Simple arguments that have their origin 
in the exponential variation of the wave functions far from atomic nucleus imply that for 
large (d - do) values an exponential form of the scaling should be more appropriate 171. 
This was in fact found in our earlier calculations [g] where we employed the restricted 
Hartree-Fock (RHF) approximation in cluster calculations, namely the clusters SizH6 and 
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SisH18. On the other hand a fitting of the SKTB parameters onto the free electron bands [7] 
reveals the d-2 scaling of (1). Due to the fact that the energy bands of the real solids are 
poorly approximated by the free electron bands, one can argue that deviations of the d-’ 
scaling can be expected if the fitting of the SKTB parameters is performed onto the correct 
band structure of the material. Series of such calculations have indicated that the exponent 
v in (1) differs substantially from Harrison’s v = 2 value and additionally it was found 
that the exponent is orbital dependent or more generally it appears different for each SKTB 
parameter [2,3,8-101. 

Harrison’s scaling form described by (I) with v = 2 refers to intersite interactions 
between first-nearest neighbours. For more distant neighbours it was found that the SKTB 
parameters vary much faster than the d-’ variation. However, it appears common practice 
to avoid the scaling of more distant interactions than those between first-nearest neighbours. 
The scaling laws are also not used in practice for intrasite matrix elements although some 
calculations have indicated a weak dependence on the lattice constant [9-11]. There appear 
some cases, however, where the scaling of the intrasite parameters is taken on an equal 
footing with the scaling of the intersite parameters, as for example in the case of strained 
lattices for which the scaling aims to reproduce experimentally or theoretically determined 
deformation potentials [3]. Such a procedure allows part of the crystal field effect to be 
incorporated in the scaling of the intrasite SKTB parameters. On the other hand the total 
energy parametrization of Sigalas and Papaconstantopoulos [5] indicated that an appropriate 
incorporation of crystal field effects is necessary in order for the scaling procedure to be 
satisfactorily transferable. An improved scaling procedure, proposed recently by Cohen 
and coworkers 1121, assigns a firm ob initio character to transferable SKTB parameters. In 
that scheme both intersite and intrasite SKTB parameters are scaled simultaneously and the 
crystal field effect on the SKTB parameters, in other words their variation with changes in 
the lattice structure, is taken into account by fitting additionally to total energies. 

In the present letter a simpler scaling scheme will be proposed, which allows one to 
separate scaling effects due to the changes in the interatomic distance from changes due to the 
variation of the local lattice structnre (i.e. the variation of the number of nearest neighbours 
(NNS)). No fitting to total energies appears necessary within the proposed scheme, which has 
the additional advantages of being very simple and computationally efficient. The proposed 
scaling of the SKTB parameters with the number of NNs is tested for the case of Si, using 
results obtained by the TB-LMTO method. 

In order to separate the crystal structure effect on the SKTB matrix elements from the 
effect that is due to the variation of the interatomic distance, we initially expressed Harrison’s 
universal SKTB matrix elements (derived by fitting to free electron energy bands) [7] in terms 
of the electron density parameter r, = ( 3 ~ / 4 n ) ’ / ~  where WO is the volume of the crystal 
unit cell. This is a necessary procedure, since a change in the crystal structure under the 
same r, implies a change in the interatomic distances, which is accounted for by (1). It was 
found that when the energy difference (Ep  - E,) (where E,, Ep are the intrasite parameters) 
is expressed in terms of the parameter r,, it does not depend on the crystal structure if this is 
diamond, simple cubic or FCC type. For BCC structure (Ep  - E$) was found to be 20% larger 
than for the other structures. On the the other hand, the universal intersite parameters, qijm,  
for the first-nearest neighbours, when expressed in terms of rs ,  showed a strong dependence 
on the crystal structure. Approximately this dependence can be expressed in terms of the 
number of the first-nearest neighbours n with an expression analogous to (I), i.e. 

(2) .hin 

where ndim and r$T refer to the number of first NNs and the universal parameters for 
a diamond lattice respectively, while n and qij,(n) to the corresponding parameters in a 

qi jm(n)  = @F(ndi,/n) 
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lattice with number of NNs equal to n. Using the results of [7] we find A,, E 1 and 

(2) is obtained by assuming that for the different lattice structures (diamond. FCC, BCC, 
SC) the parameter r, is constant. In this way we eliminate possible changes in the interatomic 
distance due to small variations in the volume per single atom as the crystal structure changes 
and thus we can isolate the effects of the lattice structure. 

A combination of (1) and (2) yields the following form of scaling for the intersite SKTB 
parameters: 

~N 2 Asp, 1 hppc E hppz = J.  

where p ( n )  = 1, &22/3, 2’16 and &/2 for SC, BCC, FCC and diamond structures 
respectively and qTA and 11“ correspond to the S K m  parameters and number of first 
NNS respectively for a reference lattice, which here is taken to be the diamond lattice with 
electron density specified by the parameter r,’”) at the equilibrium volume. 

(3) is the proposed generalization of (1). It is apparent that (3) reduces to (1) if it refers 
to a system that does not undergo any change in its lattice structure as it is expanded or 
contracted. In the following we make some further approximations of (3) and bring it into a 
simpler form, much suitable for numerical simulations. In particular, our previous findings 
on Aijm values allow us to assume that the exponents Aijm are the same and equal to one 
for every orbital. Furthermore, we take the exponent of [fi(no)/p(n)] equal to one as we 
observed that values of this exponent in the range between one and two do not change 
appreciably the resuIting form of (3). Under these approximations the n dependence of (3) 
is found to fit approximately to a power law and (3) takes the simple form 

with respect to the diamond lattice as the reference lattice. 
More accurate determination of the SKTB parameters than that obtained by fitting to the 

free electron bands can be achieved by fitting to an ab initio calculated band structure of the 
element under consideration. Equation (4) indicates that the exponents uijm can be found by 
fitting only to the ab initio calculated band structure of the element in one reference lattice, 
and in particular the diamond lattice, at various lattice constants. Then, the SKTB parameters 
suitable for other types of lattice can be obtained from (4) by replacing the correct value of 
the number of NNs and lattice parameter r,. 

The approximations made in deriving (4) do not affect the variation of V,, and V,,, 
(derived by fitting to the free electron bands) as the lattice structure changes. They appear 
however less satisfactory for the description of KpD and VE,,, On the other hand, we have 
checked the predictions of (4) with results for Si in various lattice structures that have been 
obtained by Bratkovsky [13], who used the orthogonal TB-LMTO method. The comparison, 
shown in figure 1, is very satisfactory. 

The above results indicate that scaling forms of the type of (4) are realistic and can 
ensure a satisfactory transferability. On the other  hand,^ (4) may be not universal: most 
probably its n dependence may not be satisfactorily described as in the case of Si and, 
therefore, it has to be determined by fitting to ab initio calculations when applied to other 
systems. It is evident, however, that by separating the contributions that affect the variation 
of the SKTB parameters to those due to volume changes and to those due to lattice changes 
one can achieve 
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Figure 1. The variation of V,, (solid curve) and V,, (dashed curve) according 10 (4) of the 
text. The results of Bratkovsky [13], Shown with open circles, are eqvated to those of (4) for 
n = 4 .  

(i) reduction of the computational effort for fitting the variation of the SKTB with both 
the lattice structure and the volume because volume effects can be now fitted only for one 
reference lattice structure (i.e. the diamond one) and the lattice effects require knowledge 
of the SKTB parameters for two or three structures at the equilibrium volume only, 

(ii) avoidance of both the scaling of the intrasite SKTB matrix elements with volume and 
the fitting to total energies and 

(iii) use of a simple scaling scheme that ensures transferability, is computationally 
efficient and is easily incorporated in TB-molecular dynamics simulations. 

In concluding, it is worth mentioning that the idea of describing interatomic interactions 
in terms of number of nearest neighbours appears as a key factor in the determination of 
the classical interatomic potential of Terssoff [14], who discusses the physical reasoning 
for such an approach. The so obtained classical interatomic potential exhibits the required 
simplicity we are looking for in the present work, which allows it to be extensively used in 
both Monte Carlo and molecular dyn-amics simulations. 

We thank Dr Alexis Bratkovsky for providing us with his TB-LMTO results. The present 
work was partly supported by the grant ECUS-007-9825 of the European Communities. 
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